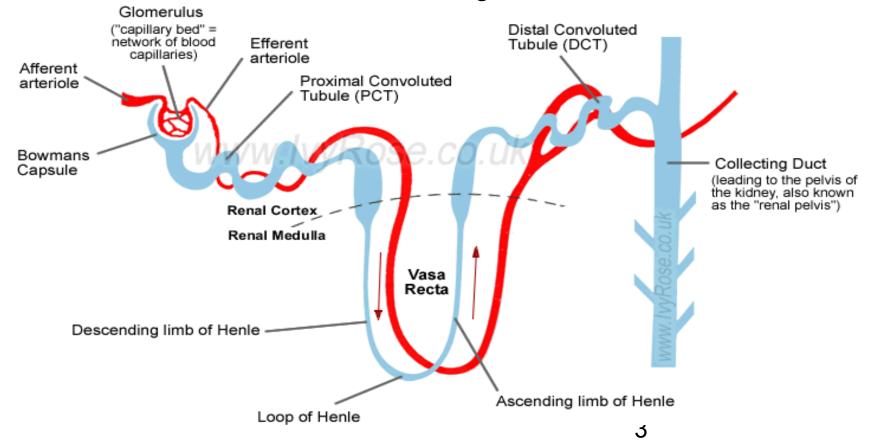
Introduction

- A diuretic is defined as drug that increases the rate of urine formation.
- The primary action of most diuretics is the direct inhibition of Na+ reabsorption (increased excretion) at one or more of the four major sites along the nephron.
- An increased Na+ excretion is accompanied by anion like Cl-Since NaCl is the major determinant of extracellular fluid volume.
- Diuretics reduce extracellular fluid volume (decrease in oedema) by decreasing total body NaCl content.


There are four major sites along the nephron that are responsible for reabsorption:

Site 1: Proximal Convoluted Tubule (PCT)

Site 2: Ascending Loop of Henle

Site 3: Distal Convoluted Tubule (DCT)

Site 4: Late Distal Tubule and Collecting Duct

Classification of Diuretics

1) Site 1 Diuretics: Carbonic Anhydrase Inhibitors

Acetazolamide, Methazolamide, Dichlorphenamide, Chloraminophenamide.

2) Site 2 Diuretics : Loop diuretics (High Ceiling Diuretics)

Furosemide, Bumetanide and Ethacrynic acid

3) Site 3 Diuretics: Thiazides

Chlorothiazide, Benzthiazide, Hydrochlorothiazide, Hydroflumethiazide, Bendroflumethiazide.

4) Site 4 Diuretics: Potassium Sparing Diuretics

- a. Na+ Channel Inhibitors: Triamterene, Amiloride
- b. Aldosterone Antagonists: Spironolactone

1) Site 1 Diuretics: Carbonic Anhydrase Inhibitors

- Carbonic anhydrase (CA) inhibitors are derived from the sulfonamide antibacterials.
- The carbonic anhydrase inhibitors have an unsubstituted sulfamoyl (—SO2NH2) group.
- Some CA inhibitors have a heterocyclic ring and some have benzene ring attached to sulfamoyl group.
- Accordingly CA inhibitors have been divided into two groups:
 - i) Simple heterocyclic sulfonamides
 - ii) *meta-*disulfamoylbenzene derivatives

Mechanism of action

This class of diuretics inhibit carbonic anhydrase enzyme in the membrane and intracellularly in proximal tubules that causes the decreased reabsorption and increased excretion of Sodium, Bicarbonates and Potassium.

Adverse Effects

Metabolic acidosis, Hypokalemia (decreased potassium), decreased glomerular filtration rate, hypersensitivity reactions

<u>Uses</u>

Major use is in the treatment of Glaucoma because it reduces the rate of formation of aqueous humor, thereby reducing the intraocular pressure.